OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Burns Pond, Whitefield,** the program coordinators have made the following observations and recommendations.

Welcome to the New Hampshire Volunteer Lake Assessment Program! As your group continues to participate in VLAP each summer, the database created for your pond will help your monitoring group track water quality trends and will ultimately enable your group and DES to identify potential pollutant sources from the watershed that may affect pond quality.

As a rule of thumb, please try to sample at least once per month during the summer months (**June**, **July**, and **August**). In addition, it may be necessary to conduct rain event sampling at multiple locations along a stream using the bracketing technique to identify sources of pollution. Furthermore, baseline studies could involve bi-weekly or monthly sampling for an extended period of time. DES will let you know if this type of sampling is appropriate.

We understand that future sampling will depend upon volunteer availability, and your group's goals and funding availability. We would like to point out that **water quality trend analysis is not feasible with only a few data points.** It will take many years to develop a statistically sound set of water quality baseline data. Specifically, after 10 consecutive years of participation in the program, we will be able to analyze the in-lake data with a simple statistical test to determine if there has been a significant change in the annual mean chlorophyll-a concentration, Secchi disk transparency reading, and phosphorus concentration. Therefore, frequent and consistent sampling will ensure useful data for future analyses.

Please contact the VLAP Coordinator early this spring to schedule the annual DES lake visit. It would be best to schedule the DES visit for early June to refresh your sampling skills!

Finally, please remember that one of your most important responsibilities as a volunteer monitor is to educate your association, community, and town officials about the quality of your pond and what can be done to

protect it! DES biologists may be able to assist you in educating your association members by attending your annual lake association meeting.

If your monitoring group's sampling events this year were limited due to not having enough time to pick-up or drop-off samples at the Limnology Center in Concord, please remember the Plymouth State University Center for the Environment Satellite Laboratory is open in Plymouth. This laboratory was established to serve the large number of lakes/ponds in the greater North region of the state. This laboratory is inspected by DES and operates under a DES approved quality assurance plan. We encourage your monitoring group to utilize this laboratory next summer for all sampling events, except for the annual DES biologist visit. To find out more about the Center for the Environment Satellite Laboratory, and/or to schedule dates to pick up bottles and equipment, please call Janet Towse or Adam Baumann, laboratory managers, at (603) 535-3269.

We encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring lakes and ponds for the presence of exotic aquatic plants. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from **June** through September. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic species, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

If you would like to help protect your lake or pond from exotic plant infestations, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers website at www.des.state.nh.us/wmb/exoticspecies/survey.htm.

FIGURE INTERPRETATION

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum and mean concentration for each sampling year that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. **The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.**

The current year (the top graph) and historical data (bottom graph) show that the **2007** chlorophyll-a concentration is **slightly greater than** the state median and is **slightly less than** the similar lake median. For more information on the similar lake median, refer to Appendix F.

Please keep in mind that this observation is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

Figures 2a and 2b and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.

The current year (the top graph) and historical (bottom graph) data show that the **2007** non-viewscope in-lake transparency is *less than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on

the **July** sampling event. As discussed previously, a comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency has not been historically measured by DES with a viewscope. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Please keep in mind these observations are based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

Again, please keep in mind that this trend is based on only **one** year of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake/pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year (top inset graph) and historical epilimnion data show that the **2007** epilimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Refer to Appendix F for more information about the similar lake median.

The current year (bottom inset graph) and historical data for the hypolimnion show that the **2007** phosphorus concentration is *slightly greater than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

Please keep in mind that these observations are based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

The dominant phytoplankton and/or cyanobacteria observed in the **July** sample were **Dinobryon** (Golden-Brown), **Synedra** (Diatom), and **Filamentous Species** (Cyanobacteria).

Phytoplankton populations undergo a natural succession during the growing year. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding yearly plankton succession. Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 2: Cyanobacteria

A small amount of filamentous cyanobacteria was present in the July sample. Certain species of cyanobacteria may produce toxins and, if present in large amounts, can be detrimental to livestock, wildlife, pets, and humans. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria.

Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather.

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, revegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **5.74** in the hypolimnion to **6.62** in the epilimnion, which means that the water is *slightly acidic*.

It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the pond bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the presence of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is not much that can be feasibly done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **6.5 mg/L**, which is **slightly greater than** the state median. In addition, this indicates that the pond is **moderately vulnerable** to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **38.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **78.1 uMhos/cm**, which is *greater than* the state median.

Conductivity at the **Inlet** station was **slightly elevated** (115.9 uMhos/cm) on the **July** sampling event.

Typically, elevated conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff, which contains road salt during the spring snowmelt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and rain event sampling along the tributaries with *elevated* conductivity so that we can determine what may be causing the increases.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. The most commonly used de-icing material in New Hampshire is salt (sodium chloride).

Therefore, we recommend that the **epilimnion** and the **tributaries** be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord will be able to conduct chloride analyses, free of charge, beginning in 2008. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration in the **Outlet** was **slightly elevated** (**29.0 ug/L**) on the **July** sampling event. The turbidity of the sample was also **elevated** (**3.74 NTUs**), which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this area of the watershed.

When the stream bottom is disturbed, sediment that typically contains attached phosphorus is released into the water column. When collecting tributary samples, please be sure to sample where the tributary is flowing and where the stream is deep enough to collect a "clean" sample free from organic debris and sediment.

Also, the field data sheet noted that a large number of geese were

present at the Dam. This is a popular feeding area for the geese and they frequent this site. Geese fecal matter can contribute to phosphorus loading and bacterial contamination of lakes and ponds. We recommend that your monitoring group employ geese management tactics to reduce the number of geese on the pond. Please refer to the Useful Resources section of this report for a list of references.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2007. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of dissolved oxygen is vital to
fish and amphibians in the water column and also to bottom-dwelling
organisms. Please refer to the "Chemical Monitoring Parameters"
section of this report for a more detailed explanation.

The dissolved oxygen concentration was greater than **100 percent** saturation at **one** and **two** meters at the deep spot on the **July** sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth to which sunlight could penetrate into the water column was approximately **3.0** meters on this sampling event, as shown by the Secchi disk transparency depth, we suspect that an abundance of algae were located in the epilimnion causing the oxygen super-saturation.

The dissolved oxygen concentration was *much lower in the hypolimnion (lower layer)* than in the epilimnion (upper layer) at the deep spot on the **July** sampling event. As stratified lakes/ponds age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion by the process of decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. When hypolimnetic oxygen concentration is depleted to less than 1 mg/L, as it was on the annual biologist visit this year, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as *internal phosphorus loading*.

The *low* oxygen level in the hypolimnion is a sign of the pond's *aging* and *declining* health. This year the DES biologist collected the dissolved oxygen profile in **July**. We recommend that the annual biologist visit for the **2008** sampling year be scheduled during **June**

so that we can determine if oxygen is depleted in the hypolimnion *earlier* in the sampling year.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity in **Outlet** sample was **slightly elevated** (3.74 NTUs) on the **July** sampling event, which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this area of the watershed. When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting samples in the tributaries, please be sure to sample where the stream is flowing and where the stream is deep enough to collect a "clean" sample free from debris and sediment.

If you suspect that erosion is occurring in this area of the watershed, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monitoring.pdf, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing

when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was **not** conducted during **2007**.

Table 14: Current Year Biological and Chemical Raw Data
Table 14 in Appendix B lists the most current sampling year results.
Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist trained your group how to collect samples at the deep spot and the outlet. Your group learned very quickly and did a great job following instructions.

In future years, the biologist will conduct a "Sampling Procedures Assessment Audit" of your monitoring group during the annual visit. Specifically, the biologist will observe the performance of your monitoring group while sampling and will document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/factsheets/ard/ard-32.htm.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975.

Best Management Practices for Well Drilling Operations, DES fact sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm.

Biodegradable Soaps and Water Quality, DES fact sheet BB-54, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-54.htm.

Canada Geese Facts and Management Options, DES fact sheet BB-53, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-1.htm.

Freshwater Jellyfish In New Hampshire, DES fact sheet WD-BB-5, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-51/htm.

Impacts of Development Upon Stormwater Runoff, DES fact sheet WD-WQE-7, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-7.htm.

IPM: An Alternative to Pesticides, DES fact sheet WD-SP-3, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-3.htm.

Iron Bacteria in Surface Water, DES fact sheet WD-BB-18, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-18.htm.

Lake Foam, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-5.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-9.htm.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-17.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-2.htm.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-4.htm.

Sand Dumping - Beach Construction, DES fact sheet WD-BB-15, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-15.htm.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-4.htm.

Soil Erosion and Sediment Control on Construction Sites, DES fact sheet WQE-6, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-6.htm.

Swimmers Itch, DES fact sheet WD-BB-2, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-2.htm.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-4.htm.

Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-16.htm.